Printed Page: 1 of 2

Subject Code: KEE402

BTECH

Roll No:

(SEM IV) THEORY EXAMINATION 2021-22 ELECTRICAL MACHINES-I

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

1. Attempt *all* questions in brief.

 $2 \times 10 = 20$

Q.No	Question	CO
a.	From consideration of the various energies involved, draw the model of	1
	an electromechanical energy conversion device.	
b.	Why do all practical energy conversion devices make use of magnetic	1
	field as a coupling medium rather than an electric field? Also, Write the	
	energy balance equation.	
c.	Discuss briefly why dc machine is not started without a starter?	2
d.	Define back pitch and front pitch of armature winding in dc machine	2
e.	What are the factors that affect the speed of the dc motor?	3
f.	Which dc motor is used to drive cranes? Give reason.	3
g.	Why is transformer not used on dc supply?	4
h.	The emf per turn of a single-phase transformer 6.6 kV/440 V, 50 Hz	4
	transformer is approximately 12 V. Calculate the number of turns in the	
	HV and LV windings.	
i.	What are vector groups in 3-phase transformer?	5
j.	Compare core type and shell type 3-phase transformers.	5

SECTION B

2. Attempt any *three* of the following:

10x3=30

Q No.	Question	СО
a.	Show that the magnetic force f_e is given by the expression.	1
	$\int \frac{\partial W_{fld}}{\partial x}(\Psi, x) = -\frac{\partial W_{fld}}{\partial x}(\Phi, x)$	
b.	Discuss armature reaction in de machine. What is the (i) purpose and (ii)	2
	location of inter-poles and compensating winding in a dc machine?	
	Explain with the help of neat sketches.	
c .	Derive out the characteristics of (i) DC shunt motor (ii) DC Series Motor	3
d.	The following data were obtained for a 20-kVA, 60-Hz, 2400/240-V distribution transformer tested at 50 Hz:	4
	Voltage Current Power	
	V A W	
	OC test : 240 1.038 122 (on lv side)	
	SC Test : 61.3 8.03 257 (on hv side)	
	Compute the (i) efficiency at ³ / ₄ full-load current (ii) maximum	
	efficiency and the load corresponding to max efficiency at unity power	
	factor (iii) Secondary terminal voltage at 0.8 power factor when the	
	applied input voltage is 2400 V and (iv) voltage regulation at 0.8 pf for	
	lagging and leading load.	
e.	With the help of circuit diagram describe open-delta connection? Prove	5
	that the open delta connection has a kVA rating of 57.7% of the rating	
	of the normal delta-delta connection.	

Download all NOTES and PAPERS at StudentSuvidha.com

Printed Page: 2 of 2 Subject Code: KEE402

Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2021-22 ELECTRICAL MACHINES-I

SECTION C

3. Attempt any *one* part of the following:

10x1=10

3.	Att	empt any <i>one</i> part of the following: 10)x1=1(
	Q No.	Question	CO
	a.	Derive a relationship between magnetic field energy and co-energy for a singly excited system.	1
	b.	For an electromagnetic system, show that the mechanical work done is	1
	0.	equal to the area enclosed between the two magnetization curves at open	-
		and closed positions of the armature and the ψ -i locus during	
		instantaneous armature movement.	
4.	Att	empt any <i>one</i> part of the following: 10x	1=10
	Q No.	Question	CO
	a.	With the help of neat sketch briefly (i) the process of commutation and	2
		(ii) delayed commutation in a dc machine.	
	b.	Derive the EMF equation and Torque equation of dc machine	2
5.	Att	empt any <i>one</i> part of the following: 10x	1=10
	Q No.	Question	CO
	a.	With the help of suitable circuit diagrams, explain Armature Control	3
		Method and Field Control Method for speed control of DC Series Motor.	
	b.	Hopkinson's test conducted on 2 identical machines gave the following	3
		test result: field currents 5 A and 4.2 A, line voltage 230V, motor	
		armature current 380 A, line currents excluding both the field currents	
		is 50 A. Calculate the efficiency of both machines. Take R_a (each	
		machine) =0.02 ohms.	
6.			<u>(1=10</u>
	Q No.	Question	CO
	a.	With the help of circuit diagram explain the procedures of open circuit	4
		tests and short or cuit tests conducted on a single-phase transformer.	
		How parameters of equivalent circuit can be determined from these	
	1		
	b.	A 200 WA transformer has an efficiency of 98% at full load. If the	4
		maximum efficiency occurs at three quarters of full load, calculate the	
		efficiency at half load. Assume negligible magnetizing current and power factor of 0.8 at all loads	
7.	<u> </u>	empt any <i>one</i> part of the following: 10x1	 10
7.	Q No.	Question Toxi	 CO
		· · · ·	5
	a.	What are the advantages of a bank of three 1-phase transformers over a unit transformer? Discuss the different types of connections employed	5
		in 3-phase transformers?	
	b.	Enumerate the conditions necessary for two 3-phase transformers to be	5
	0.	connected in parallel. Two single phase transformers, rated 1000 kVA	5
		and 500kVA respectively, are connected in parallel on both HV and LV	
		sides. They have equal voltage ratings of $11 \text{kV}/400 \text{ V}$ and their per unit	
		impedances are $(0.02 + j 0.07)$ and $(0.025 + j 0.0875)$ respectively. What	
		is the largest value of the unity power factor load that can be delivered	
		by the parallel combination at the rated voltage? How is the load shared	
		between the two transformers?	

Download all NOTES and PAPERS at StudentSuvidha.com